Precipitation and Latent Heating in Tropical Easterly Waves

Elinor Martin | University of Oklahoma | elinor.martin@ou.edu Justin Stachnik | University of Kansas | stachnik@ku.edu Rachel McCrary | NCAR| rmccrary@ucar.edu

Goals and Objectives

Use satellite data to understand precipitation and heating during the lifecycle of tropical easterly waves (TEWs) to improve model biases in the representation of these waves.

Objective 1: Determine and analyze the amount and structure of convection and precipitation over the lifecycle of TEWs across the tropics.

Objective 2: Examine the latent heating profiles within TEWs and their relationship with TEW intensity and evolution.

Objective 3: Diagnose variability in TEW precipitation processes spatially (region-to-region) and temporally (year-to-year).

Objective 4: Identify and understand discrepancies in latent heating profiles of TEWs in MERRA-2 reanalysis and the NASA-GISS climate model.

Hypotheses

General: The interaction between moist convection and TEWs is a major source of weather and climate model bias through biases in latent heating.

Precipitation: The precipitation maximum (and convective/stratiform structure) is a function of the lifecycle of the wave as opposed to its spatial location. The maximum moves ahead of the trough as the wave matures.

Latent Heating: The vertical structure will become more "top-heavy" as the low-level curvature vorticity and precipitation increase for maturing TEWs with an associated increase in stratiform rain fraction.

Spatial Variability: The regional differences in the relationship between precipitation and wave circulation are due to inconsistencies in wave sampling methods, rather than physical differences in wave activity across basins.

Energy Budget: To simulate TEWs accurately the correct phasing and structure of precipitation in TEWs is vital to produce the correct energy budget contributions from latent heating.

Summary

- TEWs important for convection and precipitation
- They occur globally but are studied little outside the Atlantic
- This study aims to understand spatial, temporal, and lifecycle variability of precipitation and heating associated with TEWs
- TEWs exist in GPM IMERG precipitation
 - IMERG spectra shows signal in TD region but less than TRMM
 - Weaker signal than expected
 - Maxima in Atlantic, E. Pac., and broad peak in W. Pac.
 - Have not removed tropical cyclones
- Latent heating magnitude is significantly less in TRMM/GPM observations than reanalysis

References:

Hodges, K. I., 1995: Feature tracking on the unit sphere. *Mon. Wea. Rev.*, 123, 3458-3465. Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017.

Next Steps

- Identify and track individual waves in MERRA-2 & IMERG
 - TRACK (Hodges 1995)
 - TEMPEST Extremes (Ullrich and Zarzycki, 2017)
- Track using curvature or relative vorticity and precipitation
- Remove tropical cyclones
- Co-locate precipitation and heating with wave tracks
- Regional variability
- Association of waves with wet or dry years
- TEW heating in GPM/TRMM and MERRA-2
- Objectively diagnose the lifecycle of TEWs using strength and tendency to identify wave phase
- TEW heating as a function of total lifetime (i.e., short- vs. long-lived waves), areal coverage and size (i.e., small vs. large), and intensity (weak vs. strong waves).
- Energy budget analysis in MERRA-2 and NASA GISS ModelE in relation to TEW heating